

Comparison of corrosion behavior of primary/modified nickel slag with semi-rebonded periclase-chromite refractory

(Yuchi Liu¹, Hongfeng Yin¹, Songxiong Ding², Hudie Yuan¹)

- 1. Xi 'an University of Architecture and Technology
- 2. Agder University college

Reporter: Yuchi Liu

E-mail: liuyuchi@xauat.edu.cn

CONTENTS

Background Preparation **Results and Discussion** Conclusions 4

Background

Nickel sulfide ore

Oxygen-rich top blow smelting $2NiS + 3O_2 \rightarrow 2NiO + 2SO_2$ (1)

$$FeS + NiO \rightarrow NiS + FeO \qquad (2)$$
$$NiS + O_2 \rightarrow Ni + SO_2 \qquad (3)$$
$$NiS + 2NiO \rightarrow 3Ni + SO_2 \qquad (4)$$

- (1) Oxidation roasting
- (2) Sulfur smelting
- (3) Direct smelting
- (4) Blowing of sulfur

Nickel

Nickel slag

Stainless steel

Alloy steel

Special steel

Nickel-based alloy

Electroplate

Non-alloy area

What about this?

Preparation

							×		
	TFe ₂ O ₃	SiO ₂	MgO	CaO	Al ₂ O ₃	Na ₂ O	K ₂ O	Ni	Cu
Primary	35.36	47.26	3.50	3.02	1.86	0.46	0.20	4.60	1.47
Modified	33.28	37.52	6.05	15.44	4.05	1.16	0.31	1.23	0.96

Table 1 Composition of primary and modified nickel slag (Wt %)

Table 2 Properties of the used semi-rebonded periclase-chromite bricks (Wt %)

MgO / %	Cr ₂ O ₃ / %	SiO2 / %	Apparent porosity / %	Compressive strength / MPa	Refractoriness under load (0.2 MPa, T _{0.6}) / °C
≥58.0	≥18.0	≤2.0	≤16.0	≥40.0	≥1700

Preparation

Temperature/ °C Time/ h Specimens **Slag types** S- P3 1370 3 Р **S-P7** 1370 Р **S-P11** 1370 11 Р **S-M3** 1370 3 Μ **S-M7** 1370 7 Μ 1070 **Ъ Г** 1 1 Φ 20mm Slag layer **Corroded** layer Sampling area for microstructure observation Penetrated layer Sampling area for **Original brick** phase composition analysis Φ 50mm

Table 3 Corrosion conditions and specimen descriptions

Part 03

Results and discussion

Diffraction analysis results of raw materials

(a) Semi-rebonded periclase-chromite brick

(b) Modified/primary slag

S → MgO 0 → MgCr_{0.2}Fe_{1.8}O₄ \$\$→MgO ♦-MgCr_{0.2}Fe_{1.8}O₄ *-(Fe,Mg)(Cr,Fe)2O4 S-M11 o-NiCr2O4 命物 ←CaMgSi₂O₆ *-(Fe,Mg)(Cr,Fe)2O4 O-NiCr2O4 Intensity/a.u. S-P11 a.u. ←CaMgSi₂O₆ Intensity/ S-M7 S-P7 S-M3 S-P3 40 20 60 80 20 40 60 80 20/° 20/°

Diffraction analysis results of corroded samples

(a) Corroded by primary slag

(b) Corroded by modified slag

Pictures of samples corroded by primary/modified sag

Microstructure and energy spectrum analysis results of S-P7

Microstructure and energy spectrum analysis results of S-M7

Microstructure (BSD) of the corroded specimen slag layer (a: S-P3, b: S-M3)

	0	Mg	Al	Si	Ca	Cr	Fe	Ni	Cu	
1	29.2	4.0	0.9	2.1	0.3		58.9	4.6		
2	40.5	28.2		19.9	0.3		7.8	3.3	Energy spectrum analys	sis
3	41.5	10.5	0.9	23.7	12.6		10.8		results for the points	
4	31.7	7.0	2.1	18.6	14.1	11.4	15.1			
5	21.7	6.9	1.5		0.3	13.1	51.7	3.8	1.0	

S-P7

S-M7

Microstructure (BSD) of the corroded specimen penetration layer

Microstructure (BSD) of the corroded specimen penetration layer (a: S-M11, b: enlarged image for a)

		0	Mg	Al	Si	Ca	Cr	Fe	
	1	27.1	13.4	8.7			41.0	9.8	Q V
	2	42.5	33.6	21	20.9	3.1			
	3	41.6	18.7		18.5	21.1			Energy spectrum analysis
	4	33.3	6.4	5.1	17.3	14.5	9.6	13.9	results for the points
_	5	24.9	12.4	6.3			32.3	24.1	

Microstructure (BSD) of the corroded specimen isolation layer (a: S-P3, b: S-M3)

Energy spectrum analysis results for the points in isolation layer

		0	Mg	Al	Si	Ca	Cr	Fe	Ni	Cu
	l	40.7	28.9		18.0			8.8	3.6	
	2	19.5	3.0	0.9		0.3	14.9	45.6	5.1	10.7
	3	22.3	4.8	1.0		Or I	18.1	48.5	5.3	
2	4	41.4	10.8	0.8	23.8	12.4		10.8		
	5	33.3	7.4	2.1	19.1	14.6	9.9	13.6		
	5	21.9	7.6	1.6			13.2	51.0	3.4	1.4
	7	21.7	9.1	2.0			24.8	40.8	1.8	
Sr a	8	41.5	33.7		21.0	2.5		1.3		
)	32.3	7.4	2.3	20.0	24.2	11.4	2.4		

Components of the simulation system

											6
C/S	R	TFe ₂ O ₃	SiO ₂	MgO	CaO	Al ₂ O ₃	Na ₂ O	K ₂ O	Ni	Cu	5 - R=0.44 R: Basicity of the slag
0.064	0.44	35.36	47.26	3.50	3.02	1.86	0.46	0.20	4.60	1.47	ý 4 -
0.200	0.52	35.36	47.26	3.50	9.45	1.86	0.46	0.20	4.60	1.47	ty Ba
0.400	0.62	35.36	47.26	3.50	18.90	1.86	0.46	0.20	4.60	1.47	R=0.52
0.600	0.73	35.36	47.26	3.50	28.36	1.86	0.46	0.20	4.60	1.47	
0.800	0.84	35.36	47.26	3.50	37.81	1.86	0.46	0.20	4.60	1.47	R=0.62 R=0.84 R=0.94
1.000	0.94	35.36	47.26	3.50	47.26	1.86	0.46	0.20	4.60	1.47	0 R=0.73 R=0.99
1.200	0.99	35.36	47.26	3.50	56.71	1.86	0.46	0.20	4.60	1.47	0.0 0.2 0.4 0.6 0.8 1.0 1.2
											w(CaO)/w(SiO ₂)

Viscosity of the simulation system at 1370 °C

MgCr₂O₄, Ca₂SiO₄, CaSiO₃, $Ca_3Si_2O_7$, Ca₃Cr₂Si₃O₁₂, Ca₃MgSi₂O₈

GactSag

FeO

MgCr₂O₄-FeO-NiO ternary system under different C/S conditions

Ca₃Cr₂Si₃O₁₂ and Ca₃MgSi₂O₈

The Gibbs free energy change during the corrosion reaction

Saturated solubility of Cr₂O₃ in slag and slag composition at different C/S

Conclusions

The calcium-silicon mass ratio has a substantial influence on the corrosion behavior of semi-rebonded periclase-chromite refractories and nickel slag. A comparative study of the micro-morphology and phase composition of the corroded specimens revealed that the corrosion products emerge largely at the slag-refractory interface. Nickel slag with a high calcium-silicon mass ratio produces corrosion products such as Ca₃Cr₂Si₃O₁₂ and Ca₃MgSi₂O₈. These chemicals prevent the creation of a continuous isolation layer, allowing Ca²⁺ and Si⁴⁺ to diffuse through the nickel slag. As a result, nickel slag with a greater calcium-silicon mass ratio is more likely to penetrate the refractory. Semi-rebonded periclase-chromite refractories have a reduced resistance to nickel slag corrosion due to their high calcium-silicon mass ratio.

